ÜBER POLYSTANNANE

IV *. VERGLEICH VON ABSTÄNDEN d(Sn-Sn), NMR-KOPPLUNGEN ¹J(Sn-Sn) UND VALENZSCHWINGUNGEN $\nu(\text{Sn}-\text{Sn})$ IN ACETAT-VERBRÜCKTEN DISTANNANEN Ph₄Sn₂(X₃CCO₂)₂ (X = H, Cl, F)

STEFAN ADAMS **, MARTIN DRÄGER* und BERND MATHIASCH

Institut für Anorganische Chemie und Analytische Chemie der Johannes Gutenberg-Universität, Johann Joachim Becher-Weg 24, D-6500 Mainz (Deutschland)

(Eingegangen den 11. Dezember 1986)

Summary

The three compounds $Ph_4Sn_2(X_3CCO_2)_2$ were synthesized from Ph_2SnH_2 and X_3CCOOH (X = H, Cl) or by cleavage of two phenyl groups in Ph_6Sn_2 with stoichiometric amounts of X_3CCOOH (X = Cl, F). The crystal structures (R = 0.041, 0.030, 0.058) show that the Ph_4Sn_2 units are bridged by two isobidentate acetates resulting in five-coordinated tin atoms. Five crystallographically independent centrosymmetric molecules form three distinct conformers. Bonding parameters (compared with Ph_6Sn_2): distances d(Sn-Sn) 269, 271, 272, 277 pm; NMR couplings (CDCl₃ solution) ${}^{1}J(Sn-Sn)$ 16870, 9443, 12915, 4480 Hz; stretching vibrations $\nu(Sn-Sn)$ 152, 155, 157, 139 cm⁻¹. The ion pairs $[Ph_4Sn_2]^{2+}$ [(X_3 -CCO₂)₂]²⁻ are discussed.

Zusammenfassung

Die drei Verbindungen $Ph_4Sn_2(X_3CCO_2)_2$ wurden synthetisiert aus Ph_2SnH_2 und X_3CCOOH (X = H, Cl) oder durch Abspaltung von zwei Phenylgruppen des Ph_6Sn_2 mit stöchiometrischer Menge X_3CCOOH (X = Cl, F). Die Kristallstrukturen (R = 0.041, 0.030, 0.058) ergeben Ph_4Sn_2 -Einheiten, die durch zwei isobidentate Acetatgruppen überbrückt sind; die Sn-Atome sind 5-koordiniert. Fünf kristallographisch unabhängige, zentrosymmetrische Moleküle bilden drei unterschiedliche Konformere. Die folgenden Bindungsparameter wurden im Vergleich zu Ph_6Sn_2 gefunden: Abstände d(Sn-Sn) 269, 271, 272, 277 pm; NMR-Kopplungen in $CDCl_3$ -Lösung ¹J(Sn-Sn) 16870, 9443, 12915, 4480 Hz; Valenzschwingungen

^{*} Mitteilung; auszugsweise präsentiert auf 5th Int. Conf. Ge, Sn and Pb [1]. III. Mitteilung siehe Lit. 2.

^{**} Mit Teilen der geplanten Dissertation von S. Adams.

 ν (Sn–Sn) 152, 155, 157, 139 cm⁻¹. Ionenpaare [Ph₄Sn₂]²⁺ [(X₃CCO₂)₂]²⁺ werden diskutiert.

Einleitung

Bekannte Werte von ¹¹⁹Sn-¹¹⁹Sn NMR-Kopplungen über eine Bindung variieren in einem grossen Bereich (Übersicht s. [2,3]). Kopplungen zwischen anionischen Sn-Atomen werden mit Beträgen bis 6000 Hz und negativem Vorzeichen beobachtet. An neutralen Polystannanen werden Werte zwischen 0 und 15000 Hz und positivem Vorzeichen gefunden, wobei Beträge über 5000 Hz durch Wechselwirkungen mit Donor-Substituenten oder -Lösungsmitteln und daraus folgende Koordinationserhöhung am Sn-Atom hervorgerufen werden. Dies ist nachgewiesen für eine Reihe von 1.2-disubstituierten Tetramethyldistannanen Me₄Sn₂X₂ [2,4,5].

Um den Einfluss der organischen Substituenten am Sn-Atom auf ¹J(Sn-Sn) zu studieren, untersuchten wir Verbindungen aus der Reihe der Tetraphenyl-1,2bis(acyloxy)-distannane. Wir teilen hier Röntgen-, NMR (¹H. ¹³C. ¹¹⁹Sn)- und Schwingungsdaten von Ph₄Sn₂(RCO₂)₂ (R = H₄C, Cl₃C und F₅C) mit. Ein neuer Syntheseweg wird beschrieben.

Synthese

Reaktion von Diphenylstannan mit organischen Carbonsäuren führt mit befriedigenden bis guten Ausbeuten zu Tetraphenyl-1,2-bisacetoxydistannanen (Gl. 1) [6,7].

$$2 \operatorname{Ph}_{2}\operatorname{SnH}_{2} + 2 \operatorname{RCOOH} \rightarrow \operatorname{Ph}_{4}\operatorname{Sn}_{2}(\operatorname{RCO}_{2})_{2} + 2\operatorname{H}_{2}$$
(1)

Bei Einsatz von Trihalocarbonsäuren werden jedoch relativ geringe Ausbeuten

	$Ph_4Sn_2(H_3CCO_2)_2$	$Ph_4Sn_2(F_3CCO_2)_2$	$Ph_4Sn_2(Cl_3CCO_2)_2^{-5}$
a (pm)	884.4(1)	1018.1(2)	914.6(2)
<i>b</i> (pm)	884.4(1)	1236.3(4)	944.9(2)
c (pm)	1785.6(3)	1246.9(4)	1078.5(2)
α (°)	91.85(2)	78.73(4)	307.38(2)
β(°)	98.83(2)	77.24(2)	94.52(2)
γ(°)	103.77(1)	77,06(3)	113.87(2)
V_{EZ} (×10 ⁶ pm ³) –	1337	1474	792
Raumgruppe	<i>P</i> Ĩ (Nr. 2)	$P\overline{1}$ (Nr. 2)	P1 (Nr 2)
Z	2	2	1
$d_{\rm exp}$ (g cm ⁻³)	1.64	1.74	1.82
d_{rant} (g cm ⁻³)	1.65	1.74	1.825
Molmasse	663.90	771.84	870.57
Summenformel	$C_{28}H_{26}O_4Sn_2$	$C_{28}H_{20}F_6O_4Sn_2$	$C_{28}H_{20}Cl_5O_4Sn_5$
μ (Mo- K_{α}) (cm ⁻¹)	17.43	16.15	19,84

TABELLE 1

KRISTALLDATEN VON $Ph_4Sn_2(H_3CCO_2)_2$, $Ph_4Sn_2(F_3CCO_2)_2$ UND $Ph_4Sn_2(C)_2CCO_2)_2$

^{*a*} Gitterkonstanten in Lit. 1) für eine nicht-reduzierte Zelle: *a* 884.3, *b* 1782.8, *c* 875.5 pm, *α* 88.28, *β* 76.50, γ 98.97°, *V* 1323×10⁶ pm³, ^{*b*} Isostrukturell zu Ph₄Ge₂(Cl₃CCO₂)₂ [8]: *a* 906.2(4), *b* 929.8(2), *c* 1058.0(3) pm, *α* 107.48(3), *β* 94.66(5), γ 114.33(3)°, *V* 753×10⁶ pm³.

erhalten. Setzt man dagegen stöchiometrische Mengen dieser starken Säuren mit Hexaphenyldistannan in CHCl₃ bei Raumtemperatur um, so entstehen die gewünschten Tetraphenyldistannan-1,2-diester in höherer Ausbeute (Gl. 2) (bzgl. der analogen Umsetzung von Ge₂Ph₆ vgl. Lit. 8). Ein entsprechender Reaktionsverlauf kann auch bei der Umsetzung von Ph₃SnH mit starken Carbonsäuren zu Ph₄Sn₂(RCO₂)₂ [9] vermutet werden.

$$Ph_{6}Sn_{2} + 2X_{3}CCOOH \xrightarrow{CHCl_{3}} Ph_{4}Sn_{2}(X_{3}CCO_{2})_{2} + 2 PhH$$
(2)
(X = F, Cl)

TABELLE 2

 NAN $Ph_4Sn_2(H_3CCO_2)_2$ MIT STANDARDABWEICHUNGEN (Ph(1) C(11) bis C(16) usw.)

 Atom
 x
 y
 z
 U_{eq}^{a}

 Molekül a
 Sn(1a)
 0.08809(2)
 0.14768(2)
 0.01400(1)
 0.0342(1)

 C(11a)
 0.1989(3)
 0.2654(3)
 -0.0728(1)
 0.037(1)

LAGE- UND TEMPERATURPARAMETER ^a VON TETRAPHENYL-1,2-BIS(ACETOXY)DISTAN-

Sn(1a)	0.08809(2)	0.14768(2)	0.01400(1)	0.0342(1)	
C(11a)	0.1989(3)	0.2654(3)	-0.0728(1)	0.037(1)	
C(12a)	0.1872(4)	0.1879(5)	-0.1437(2)	0.052(1)	
C(13a)	0.2640(4)	0.2691(6)	-0.1983(2)	0.066(2)	
C(14a)	0.3509(5)	0.4187(7)	-0.1834(3)	0.074(2)	
C(15a)	0.3679(6)	0.4941(5)	-0.1126(3)	0.068(2)	
C(16a)	0.2861(4)	0.4153(4)	-0.0587(2)	0.053(1)	
C(21a)	0.1396(3)	0.2917(3)	0.1168(1)	0.040(1)	
C(22a)	0.2279(4)	0.2566(4)	0.1818(2)	0.050(1)	
C(23a)	0.2707(5)	0.3604(6)	0.2464(2)	0.064(2)	
C(24a)	0.2227(5)	0.4985(5)	0.2465(2)	0.062(2)	
C(25a)	0.1327(6)	0.5332(5)	0.1827(3)	0.073(2)	
C(26a)	0.0908(5)	0.4283(4)	0.1176(2)	0.061(2)	
O(1a)	-0.1417(2)	0.2155(2)	-0.0220(1)	0.051(1)	
O(2a)	-0.2870(2)	-0.0305(2)	-0.0529(1)	0.046(1)	
C(1a)	-0.2694(3)	0.1163(3)	-0.0460(2)	0.043(1)	
C(2a)	-0.4121(4)	0.1777(5)	-0.0671(3)	0.076(2)	
Molekül b					
Sn(1b)	0.42413(2)	0.06196(2)	0.54832(1)	0.0339(1)	
C(11b)	0.3444(3)	-0.0503(3)	0.6443(1)	0.042(1)	
C(12b)	0.4449(4)	-0.0661(4)	0.7095(2)	0.054(1)	
C(13b)	0.3846(5)	-0.1400(5)	0.7699(2)	0.066(2)	
C(14b)	0.2269(6)	-0.1984(5)	0.7667(3)	0.076(2)	
C(15b)	0.1274(5)	-0.1822(6)	0.7025(3)	0.078(3)	
C(16b)	0.1830(4)	-0.1097(4)	0.6413(2)	0.056(2)	
C(21b)	0.3513(3)	0.2736(3)	0.5369(1)	0.037(1)	
C(22b)	0.3919(4)	0.3839(4)	0.5977(2)	0.054(1)	
C(23b)	0.3340(6)	0.5190(4)	0.5946(2)	0.066(2)	
C(24b)	0.2387(5)	0.5428(4)	0.5309(2)	0.063(2)	
C(25b)	0.1946(6)	0.4315(5)	0.4694(2)	0.077(2)	
C(26b)	0.2497(5)	0.2961(5)	0.4738(2)	0.065(2)	
O(1b)	0.6677(2)	0.1689(2)	0.6143(1)	0.042(1)	
O(2b)	0.7945(2)	0.0689(2)	0.5334(1)	0.044(1)	
C(1b)	0.7917(3)	0.1468(3)	0.5923(1)	0.039(1)	
		()			

^{*a*} Äquivalentes isotropes U [12] (1/3 der Spur des orthogonalen U_{ij} -Tensors).

LAGE- UND TEMPERATURPARAMETER "VON TETRAPHENYL-1.2-BIS(TRIFLUORACE-TOXY)DISTANNAN $Ph_4Sn_2(F_3CCO_2)_2$ MIT STANDARDABWEICHUNGEN (Ph(1) C(11) bis C(16) usw.; fehlgeordnete F_3C -Gruppen mit jeweils sechs halbbesetzten F-Positionen erfasst)

Atom	X	<u>}</u> ,	1997 The Control of Co	$U_{\rm ev}^{-\omega}$
Molekül a				
Sn(1a)	0.12084(3)	0.03483(3)	-0.04405(3)	0.0523(2)
C(11a)	0.3080(5)	-0.0689(4)	-0.1092(5)	0.058(2)
C(12a)	0.3267(7)	-0.1098(7)	-0.2043(7)	0.085(4)
C(13a)	0.4535(8)	- 0.1784(8)	-0.2443(8)	0.101(5)
C(14a)	0.5582(8)	-0.1917(8)	-0.1859(10)	0.103(6)
C(15a)	0.5402(8)	-0.1483(10)	~ 0.0941(11)	() 123(7)
C(16a)	0.4150(7)	-0.0888(8)	-0.0508(9)	0.105(6)
C(21a)	0.1461(5)	0.2022(4)	0.0510(5)	0.058(2)
C(22a)	0.2062(8)	0.2589(6)	-0.1480(6)	0.084(4)
C(23a)	0.2298(10)	0.3714(7)	-0.1555(10)	0.107(6)
C(24a)	0.1874(9)	0.4204(7)	-0.0580(9)	0 (094(5)
C(25a)	0.1308(8)	0.3616(6)	0.0394(7)	(0.084(4))
C(26a)	0.1060(7)	0.2535(6)	0.0446(6)	0(074(3))
O(1a)	0.0416(4)	0.0734(3)	0.2094(3)	0.065(2)
O(2a)	-0.1597(4)	0.0141(4)	-0.1362(3)	0.072(2)
C(1a)	-0.0734(6)	0.0544(5)	-0.2105(5)	0.062(3)
C(2a)	-0.1171(7)	0.0881(7)	-0.3244(6)	0.087(4)
F(1a)	-0.0049(13)	0.0407(12)	-0.4055(10)	0.121(1)
F(2a)	-0.0975(13)	0.1899(9)	-0.3720(10)	0.121(1)
F(3a)	-0.1628(15)	0.0000(10)	-0.3506(12)	0.121(1)
F(4a)	-0.2235(13)	0.0457(11)	-0.3298(12)	0.121(1)
F(5a)	-0.2482(13)	0.1608(10)	-0.3120(11)	0.121(1)
F(6a)	-0.0191(14)	0.1069(13)	- 0.4132(11)	0.121(1)
Molekül b				
Sn(1b)	0.12796(4)	0.45935(3)	0,44640(3)	0.0608(3)
C(11b)	0.2153(6)	0.5334(5)	0.2870(5)	0.062(3)
C(12b)	0.1394(8)	0.6060(8)	0.2146(7)	0.087(5)
C(13b)	0.1995(12)	0.6519(8)	0.1082(8)	0.106(7)
C(14b)	0.3346(12)	0.6333(8)	0.0760(8)	0.103(6)
C(15b)	0.4167(11)	0.5534(14)	0.1438(10)	0.134(9)
C(16h)	0.3538(8)	0.5040(10)	0.2514(8)	0.101(6)
C(21b)	0.2669(7)	0.3199(6)	0.5128(6)	0.072(4)
C(22h)	0.3744(8)	0.3321(8)	0.5507(8)	(0.094(5))
C(23b)	0.4688(10)	0.2393(10)	0.5936(9)	0.102(6)
C(24b)	0.4452(13)	0.1309(13)	0.5937(11)	0.123(9)
C(25b)	0.3415(13)	0.1143(9)	0.5542(11)	0.112(8)
C(26b)	0.2520(9)	0.2085(7)	0.5100(8)	0.089(5)
O(1b)	0.1965(5)	0.5762(4)	0.5355(4)	0.080(3)
O(2b)	-0.0160(5)	0.6482(4)	0.6237(4)	0.085(3)
C(1b)	0.1098(7)	0.6385(6)	0.5980(5)	().()~3(3)
C(2b)	0.1733(8)	0.7086(6)	0.6490(5)	0.087(4)
F(1b)	0.2766(12)	0.7502(10)	0.5864(10)	0.114(1)
F(2b)	0.0726(12)	0.8054(9)	0.6872(10)	0.114(1)
F(3b)	0.2447(14)	0.6445(10)	0.7243(11)	0.114(1)
F(4b)	0.1541(14)	0.6808(10)	0.7615(9)	0.114(1)
F(5b)	0.3210(11)	0.6559(10)	0.6470(11)	0.114(1)
F(6b)	0.2211(13)	0.7919(9)	0.5814(10)	0.114(1)

^{*a*} Äquivalentes isotropes U [12] (1/3 der Spur des orthogonalen U_0 -Tensors)

Ein Überschuss an Säure führt zur vollständigen Abspaltung der organischen Gruppen [10].

Röntgendaten

Tabelle 1 fasst die Kristalldaten der hier beschriebenen drei Verbindungen zusammen. Die Strukturen von $Ph_4Sn_2(H_3CCO_2)_2$, $Ph_4Sn_2(F_3CCO_2)_2$ und $Ph_4Sn_2(Cl_3CCO_2)_2$ wurden bestimmt (R = 0.041, 0.058, 0.030); bzgl. einer vorläufigen Mitteilung zur Struktur von $Ph_4Sn_2(H_3CCO_2)_2$ siehe Lit. 11.

Tabellen 2, 3 und 4 enthalten die Lage- und Temperaturparameter, Fig. 1 zeigt die gefundenen Moleküle aus gleicher Blickrichtung. Die wichtigsten Bindungslängen und -winkel sind in Tabelle 5 aufgeführt.

Alle drei hier beschriebenen Verbindungen besitzen als wesentliches Merkmal eine acetat-verbrückte Distannan-Struktur (analog den Tetramethyl-1,2-bis(acyloxy)distannanen [5]), die, ausser bei $Ph_4Sn_2(CH_3CCO_2)_2$ [11], bisher nur aufgrund von IR- [7] und Mössbauer-spektroskopischen Untersuchungen [13] vermutet wurde. Eine quantitative Auswertung der Strukturdaten zeigt, dass das $C_2Sn-SnC_2$ -Molekülgerüst ideal eben ist (Summe der betreffenden Bindungswinkel um Sn jeweils 360°) und die Acetatgruppe als isobidentater Ligand fungiert (Differenzen zwischen Sn(1)–O(1) und Sn(1)–O(2') sowie zwischen C(1)–O(1) und C(1)–O(2) jeweils kleiner 3σ). Gleiches Verhalten beobachtet man bei den methylsubstituierten Distannan-Diestern [5], während die Germaniumatome im vergleichbaren

TABELLE 4

LAGE- UND TEMPERATURPARAMETER ^{*a*} VON TETRAPHENYL-1,2-BIS(TRICHLOR-ACETOXY)DISTANNAN $Ph_4Sn_2(Cl_3CCO_2)_2$ MIT STANDARDABWEICHUNGEN (Ph(1) C(11) bis C(16) usw.)

Atom	x	у	Z Z	U _{eq} ^a
$\overline{\mathrm{Sn}(1)}$	0.58494(2)	0.66290(2)	0.51847(1)	0.0326(1)
C(11)	0.6878(3)	0.7259(3)	0.3615(2)	0.036(1)
C(12)	0.8021(3)	0.8889(3)	0.3835(3)	0.046(1)
C(13)	0.8706(4)	0.9284(5)	0.2805(4)	0.067(2)
C(14)	0.8238(5)	0.8108(5)	0.1565(4)	0.075(2)
C(15)	0,7079(5)	0.6481(5)	0.1311(3)	0.063(2)
C(16)	0.6417(4)	0.6061(4)	0.2342(3)	0.046(1)
C(21)	0.6135(3)	0.8613(3)	0.6931(2)	0.037(1)
C(22)	0.5396(4)	0.9620(4)	0.6845(3)	0.056(1)
C(23)	0.5560(5)	1.0914(4)	0.7969(3)	0.067(2)
C(24)	0.6475(5)	1.1215(4)	0.9175(3)	0.062(2)
C(25)	0.7209(6)	1.0233(5)	0.9278(3)	0.069(2)
C(26)	0.7050(4)	0.8928(4)	0.8148(3)	0.056(1)
O(1)	0.3362(2)	0.6340(2)	0.4233(2)	0.0411(9)
O(2)	0.1946(2)	0.3617(2)	0.3853(2)	0.0415(9)
C(1)	0.2115(2)	0.4971(3)	0.3782(2)	0.033(1)
C(2)	0.0611(3)	0.4943(3)	0.2980(2)	0.038(1)
Cl(1)	-0.12616(9)	0.3471(1)	0.3107(1)	0.0568(4)
Cl(2)	0.0652(1)	0.6892(1)	0.3467(1)	0.0776(6)
Cl(3)	0.0782(1)	0.4365(1)	0.12948(8)	0.0738(6)

^{*a*} Äquivalentes isotropes U [12] (1/3 der Spur des orthogonalen U_{ii} -Tensors).

Molekül a

Molekúl b

Fig. 1. Gefundene Moleküle $Ph_4Sn_2(H_3CCO_2)_2$ (oben). $Ph_4Sn_2(F_3CCO_2)_2$ (Mitte: fehlgeordnete F_3C -Gruppen, zwei Positionen Besetzungsfaktor jeweils 0.5) und $Ph_4Sn_2(CI_3CCO_2)_2$ (unten).

Atome	$Ph_4Sn_2(H_3G)$	$CCO_2)_2$	$Ph_4Sn_2(F_3C)$	CO ₂) ₂	Ph ₄ Sn ₂ -
	Molekül a	Molekül b	Molekül a	Molekül b	$(Cl_3CCO_2)_2$
Sn(1)-Sn(1')	269.1(1)	269.6(1)	- 271.8(1)	272.0(2)	271.1(1)
Sn(1) - O(1)	226.1(3)	225.9(3)	230.5(5)	228.8(7)	229.5(3)
Sn(1) - O(2')	227.8(3)	227.4(3)	230.9(5)	232.4(7)	232.2(3)
Sn(1) - C(11)	213.0(4)	213.8(4)	213.7(6)	211.0(6)	212.2(3)
Sn(1) - C(21)	212.6(4)	212.6(4)	212.5(7)	212.8(8)	213.3(4)
O(1)-C(1)	125.9(4)	127.4(5)	124.9(9)	126.8(9)	124.6(3)
O(2) - C(1)	127.1(5)	124.5(5)	123.8(8)	123.5(10)	125.1(4)
$\overline{C(Ph)} - \overline{C(Ph)}$	138(2)	138(2)	138(4)	139(4)	139(2)
C(1)–C(2)	149.1(6)	149.5(5)	153(1)	149(1)	155.3(5)
C(11) - Sn(1) - Sn(1')	120.2(1)	123.9(1)	125.5(2)	123.1(2)	118.4(1)
C(21)-Sn(1)-Sn(1')	128.4(1)	125.9(1)	122.9(2)	125.2(2)	124.0(1)
C(11)-Sn(1)-C(21)	111.4(2)	110.0(2)	111.6(3)	111.7(3)	117.6(2)
O(1) - Sn(1) - Sn(1')	85.0(1)	85.3(1)	84.7(2)	84.5(2)	84.4(1)
O(1) - Sn(1) - C(11)	94.1(2)	92.6(2)	93.7(3)	93.4(3)	91.1(2)
O(1) - Sn(1) - C(21)	92.2(2)	96.6(1)	93.9(3)	90.7(3)	92.3(2)
O(1) - Sn(1) - O(2')	168.2(1)	168.4(1)	168.9(2)	168.8(2)	168.3(4)
O(1) - C(1) - O(2)	125.7(4)	125.4(3)	131.9(7)	130.3(9)	128.4(3)

BINDUNGSLÄNGEN (pm) UND BINDUNGSWINKEL (°) IN VERBINDUNGEN $Ph_4Sn_2-(X_3CCO_2)_2$ (X = H, F, Cl) MIT STANDARDABWEICHUNGEN

 $Ph_4Ge_2(Cl_3CCO_2)_2$ zwar in einer ebenen $C_2Ge-GeC_2$ -Anordnung vorliegen, aber deutlich asymmetrisch von Sauerstoff koordiniert werden (Differenz zwischen Ge(1)-O(1) und Ge(1)-O(2') 24 pm) [8].

Ein Vergleich der gemittelten Sn-Sn- und Sn-O-Abstände, sowie der O-C-O-Bindungswinkel in den Molekülen $R'_4Sn_2(RCO_2)_2$ (Tabelle 6) zeigt eine Verringerung der Abstände und Winkel mit steigender Basizität des Säureanions RCO_2^- . Die organischen Reste R' haben wenig Einfluss.

Durch Ausbildung der trigonal-bipyramidalen Koordination an den Zinnatomen sind die äquatorialen C-Sn-C- und Sn'-Sn-C-Bindungswinkel jeweils grösser als 109.5°; dabei treten bei Phenylsubstitution in der Regel kleinere C-Sn-C- (und grössere Sn'-Sn-C-) Winkel auf als in den methylanalogen Verbindungen (Tabelle 6). Die grosse Schwankungsbreite der Bindungswinkel (110.7 bis 117.6°) bei den hier beschriebenen drei Strukturen mit insgesamt fünf unabhängigen Molekülen ist

TABELLE 6

ÜBERSICHT EINIGER STRUKTURPARAMETER VON VERBINDUNGEN $R'_4Sn_2(RCO_2)_2$

	$\mathbf{R} = \mathbf{CF}_3$		$\mathbf{R} = \mathrm{CCl}_3$		$\mathbf{R} = \mathbf{CH}_{2}\mathbf{Cl},$	$R = CH_3,$
	$\mathbf{R}' = \mathbf{Me}\left[5\right]$	$\mathbf{R'} = \mathbf{Ph}$	$\mathbf{R}' = \mathbf{Me}\left[5\right]$	$\mathbf{R}' = \mathbf{P}\mathbf{h}$	$\mathbf{R}' = \mathbf{Me}\left[5\right]$	$\mathbf{R}' = \mathbf{P}\mathbf{h}$
Sn-Sn (pm)	270.7	271.9	271.1	271.1	269.2	269.4
$\overline{\text{Sn}-\text{O}}$ (pm)	233.2	230.7	230.9	230.9	229.5	226.8
$\overline{\mathbf{O}-\mathbf{C}-\mathbf{O}}(^{\circ})$	129.6	131.1	129.5	128.4	125.5	125.6
$\overline{C-Sn-C}(\circ)$	117.8	111.7	117.6	117.6	115.1	110.7
Sn-Sn-C(°)	121.1	124.2	121.2	121.2	122.3	124.6

TABELLE 7 TORSIONSWINKEL (°) ZUR ANALYSE DER PHENYLGRUPPENVERDRILLUNG

PER VARIANTES IN A REPORT OF PARTY AND A DATA STREAM PROVIDED AND A DATA STREAM OF THE PARTY PARTY AND A DATA STREAM OF THE PARTY AND A DATA ST A DATA STREAM OF THE PARTY AND A DATA STREAM OF THE A DATA STREAM OF THE PARTY AND A DATA STREAM OF T	$Ph_4Sn_2(H_3CCO_2$) 2	$Ph_4Sn_2(F_3)$	$(CO_2)_2$	Ph ₄ Sn ₂ -
	Molekül a	Molekül b	Molekül a	Molekül b	$(Cl_3CCO_2)_2$
$\overline{C(12)-C(11)-Sn(1)-O(1)}$	90	14	- 16] ()4	- 108
C(12)-C(11)-Sn(1)-O(2')	+ 82	+156	+155	$\pm 6^{7}$	-81
C(12) = C(11) = Sn(1) = Sn(1')	- 3	- 72	-70	-) N	168
C(12)-C(11)-Sn(1)-C(21)	± 176	112	~112	: 164	+ 15
C(22)C(21)Sn(1)O(1)	+ 151 (= ~ 33) "	4()	-46	- 22	- 28
C(22)-C(21)-Sn(1)-O(2')	-19 (≜ -158)	- 149	+144	+168	± 163
C(22) - C(21) - Sn(1) - Sn(1')	$\pm 65 \ (= -118)$		-132	105	-113
C(22)=C(21)=Sn(1)=C(11)	-114(= +62)	+ 55	+ 50	+73	- 65

^d C(26) als C_{outho} gewählt

durch das sterisch anisotrope Verhalten der Phenylgruppe erklärbar. Diese Anisotropie kann mit Hilfe der Phenylgruppenverdrillung beschrieben werden (Fig. 1. Tabelle 7). Wie an Fig. 1 ersichtlich, werden drei Konformere bzgl. der Phenylorientierung beobachtet:

- 1. Ph₄Sn₂(H₃CCO₂)₂ Molekül a und Ph₄Sn₂(F₃CCO₂)₂ Molekül b.
- 2. Ph₄Sn(H₃CCO₂)₂ Molekül b und Ph₄Sn₂(F₃CCO₂)₂ Molekül a und
- 3. das Ph₄Sn₂(Cl₃CCO₂)₂-Molekül.

In den ersten beiden Konformeren treten kleinere C-Sn-C-Bindungswinkel auf, während in $Ph_4Sn_2(Cl_3CCO_2)_2$ ein Wert nahe 120° vorliegt (Tabelle 5).

NMR-Daten

Tabelle 8 fasst die an den hier beschriebenen drei Verbindungen $Ph_4Sn_2(H_3-CCO_2)_2$, $Ph_4Sn_2(F_3CCO_2)_2$ und $Ph_4Sn_2(Cl_3CCO_2)_2$ beobachteten ¹¹⁹Sn-, ¹³C- und ¹H-NMR-Daten zusammen und enthält die entsprechenden Daten der Stammverbindung Ph_6Sn_2 (vgl. Lit. 14).

Chemische Verschiebungen

Die Substitution zweier Phenylgruppen des Hexaphenyldistannans durch verbrückende Acyloxyreste RCO₂ unter Ausbildung von 5-Koordination an den Sn-Atomen führt zu einer Hochfeldverschiebung der ¹¹⁹Sn-Signale um 140 ppm für $R = H_3C$, um 80 ppm für $R = F_3C$ und um 63 ppm für $R = Cl_3C$. Dieser Effekt ist bei alkylsubstituierten Distannanen geringer; er beträgt für Bu₄Sn₂(H₃CCO₂)₂ 44 ppm gegenüber Bu₆Sn₂ [14] und für Me₄Sn₂(H₃CCO₂)₂ ca. 15 ppm relativ zu Me₆Sn₂ [4,14]. Wachsende paramagnetische Beiträge der elektronegativen Trihalocarbonsäurereste gegenüber der einfachen Acetatgruppe werden auch in den Verbindungsreihen Me₄Sn₂(RCO₂)₂ [4] und Ph₃Sn(RCO₂) [15] gefunden. Bei letzterer Monostannanreihe folgt $\delta(^{119}Sn)$ linear dem p K_a der korrespondierenden Säure [15], während in beiden Distannanreihen $R'_4Sn_2(RCO_2)_2$ die Verbindung mit $R = Cl_3C$ am weitesten tieffeld-verschoben ist.

Deutlich schwächer beeinflusst vom Wechsel der Substitution und Koordination an den Sn-Atomen sind die ¹³C-Resonanzen in den Phenylgruppen. Gegenüber Ph₆Sn₂ erscheinen in den 1,2-disubstituierten Distannanen die C_{arria}-Signale bei

¹¹⁹Sn-, ¹³C- UND ¹H-NMR PARAMETER (δ^a in ppm, |J| in Hz) VON Ph₄Sn₂(H₃CCO₂)₂, Ph₄Sn₂(F₃CCO₂)₂, Ph₄Sn₂(Cl₃CCO₂)₂ UND Ph₆Sn₂ (CDCl₃, Raumtemperatur)

<u> </u>	$Ph_4Sn_2(H_3CCO_2)_2$	$Ph_4Sn_2(F_3CCO_2)_2$	$Ph_4Sn_2(Cl_3CCO_2)_2$	Ph ₆ Sn ₂
$\delta(^{119}\text{Sn})$	- 284.9	-225.0	- 207.4	144.7
${}^{1}J({}^{119}\mathrm{Sn}-{}^{119}\mathrm{Sn})$ ^b	16870	12915	9443	4480
$\delta(^{13}C_{ipso})$	140.5	138.3	139.0	139.1
$^{1}J(^{119}\text{Sn}-^{13}\text{C})$	604.5	584.5	579.5	410.0
$^{2}J(^{119}\mathrm{Sn}-^{13}\mathrm{C})$	105.4	103.0	104.5	62.0
$\delta(^{13}C_{ortho})$	136.1	135.8	135.8	137.4
$^{2}J(^{119}\text{Sn}-^{13}\text{C})$	51.3	53.5	53.5	40.0
$^{3}J(^{119/117}\mathrm{Sn}^{-13}\mathrm{C})$	7.1	7.6	7.1	8.1
$\delta(^{13}C_{meta})$	128.8	129.5	128.3	128.6
$^{3}J(^{119}\text{Sn}-^{13}\text{C})$	64.4	67.4	64.9	48.6
$^{4}J(^{119/117}\text{Sn}-^{13}\text{C})$	5.2	5.5	с	с
$\delta(^{13}C_{para})$	129.6	130.6	130.3	128.7
${}^{4}J({}^{119/117}Sn{}^{-13}C)$	14.4	15.4	14.9	11.2
$\delta(^{13}CO_2)$	185.1	с	c	
$\delta(^{13}CX_3)$	24.4	с	с	
$\delta(C^{1}H_{3})$	2.19			

^a δ (¹³C, ¹H) gegen TMS, δ (¹¹⁹Sn) gegen SnMe₄. ^b Kopplungen ¹J(¹¹⁹Sn-¹¹⁹Sn) = Messwert ¹J(¹¹⁹Sn-¹¹⁷Sn) × 1.0465. ^c Nicht beobachtet.

höherem, die C_{para} -Signale bei tieferem Feld; C_{ipso} - und C_{meta} -Verschiebungen schwanken um die Vergleichswerte. Die relative Abfolge bei Variation des Carboxyrestes korreliert weitgehend monoton mit dem pK_a -Wert der korrespondierenden Säure.

Kopplungen

Die auffälligste Änderung beim Austausch zweier organischer Reste im Ph_6Sn_2 durch Acetatgruppen erfährt ${}^{1}J({}^{119}Sn-{}^{119}Sn)$: von 4500 Hz zwischen zwei tetraedrisch substituierten Sn-Atomen steigt der Betrag um das zwei- bis vierfache an. Die im Kristall gefundene, koordinativ verbrückte Distannanstruktur mit zwei fünfkoordinierten Sn-Atomen bleibt in Lösung offensichtlich weitgehend erhalten, wie auch IR-Spektren von beiden Phasen [7] zeigen. Die stark basische Acetat-Gruppe H₃CCO⁻₂ bewirkt die grösste Verschiebung von ${}^{1}J(Sn-Sn)$; dies entspricht dem kürzesten Sn-Sn-Abstand im Kristall. Gleiches wird für Verbindungen Me₄Sn₂(RCO₂)₂ beobachtet [4,5].

Kopplungen " $J(^{119}\text{Sn}^{-13}\text{C})$ zu den Phenyl-C-Atomen zeigen ein abgestuftes Verhalten beim Übergang Ph₆Sn₂ zu Ph₄Sn₂(RCO₂)₂. Alle vier Kopplungen zum Sn-Atom in α -Stellung wachsen deutlich an (1.3- bis 1.5-fach). Noch stärker wächst die Kopplung ²J zwischen C_{ipso} und dem Sn-Atom in β -Stellung (1.7-fach); die anderen Kopplungen zu diesem Sn-Atom sind klein, bzw. für C_{para} nicht mehr beobachtbar.

Kopplungen zwischen den Acetat-¹³C-, bzw. ¹H-Atomen und Sn werden nicht gefunden, obwohl zumindest für die Verbindung $Ph_4Sn_2(H_3CCO_2)_2$ das Spektrum

ÜBERSICHT DER GEFUNDENEN BINDUNGSPARAMETER d(Sn-Sn) (pm). ¹J(Sn-Sn) (Hz) UND $\nu(\text{Sn-Sn})$ (cm⁻¹) IN DISTANNANEN R'₄Sn₂(X)₂ (X = R'. Cl. RCO₂)

,	$\mathbf{R}' = \mathbf{P}\mathbf{h}$		APA delena ana "PERSA" (Lancana "PERSA") (dele	$\mathbf{R}' = \mathbf{M}\mathbf{e}$	the or and the Board country to collaboration and got	and any file and any of the second seco
	$\overline{d(\operatorname{Sn}-\operatorname{Sn})}$	$^{1}J(Sn-Sn)$	P(Sn - Sn)	$\overline{d(\mathrm{Sv-Sn})}$	J(Sn-Sn)	$v(Sn \cdot Sn)$
R' ₆ Sn ₂	275.5. 278.5 ^{a.t.}	4480	139 '		4404 [14]	191 [21.22]
$R'_4Sn_2Cl_2$				277.0 [2]	4997 [2]	198
$R'_4Sn_2(F_3CCO_2)_2$	271.8. 272.0	12915	150, 163	270.7 [5]	11424 [4]	205 [4.5] 4
$R'_4Sn_2(Cl_3CCO_2)_2$	271.1	9443	155	271.1 [5]	12323 [4]	209 [4,5] 4
$R'_4Sn_2(H_2ClCCO_2)_2$				269.2 [5]		215 [4.5]
$R'_4 Sn_2 (H_3 CCO_2)_2$	269.1, 269.6 "	16870	152		14980 [4]	216 [4]

^{*a*} Zwei kristallographisch unabhängige Moleküle. ^{*b*} Trikline Modifikation: d(Sn - Sn) in einer monoklinen Phase ^{*a*}: 275.9 und 278.0 pm [18]. ^{*c*} Trikline Modifikation: Werte für Probe ohne röntgenographische Charakterisierung: 136, 140 cm ⁻¹ (breit mit Aufspaltung) [19]; 138 cm ⁻¹ [20]. ^{*d*} Mittelwerte aus Lit. 4, 5, bzw. 21, 22; Lit. 20: 200 cm ⁻¹ für Me₆Sn₂ ^{*c*} 192 cm ⁻¹ für Me₄Sn₂(1, 123).

ausreichend rauscharm ist. Gleiches gilt für die Reihe der methylsubstituierten Distannane mit Ausnahme des Sn-S-gebundenen Me₄Sn₂[(MeO)₂PS₂]₂ [4]. Diese Befunde und Dissoziation und Reaktionen der hier beschriebenen Verbindungen in Acetonitril [16] stützen ihre Beschreibung als $[R'_4Sn_2]^2$ [(RCO₂)₂]^{2/2}-Ionenpaare. Es sind dynamische Gleichgewichte zwischen Assoziaten verschiedener Struktur in Lösung denkbar (vgl. z. B. [ClSn(CH₂CH₂CH₂)₂NCH₃]₂ [17]), die zu einem zeitlich gemitteltem NMR-Signal ohne Kopplungssatelliten führen. Im Massenspektrum (s. Exp. Teil) ist nur Ph₄Sn₂(F₃CCO₂)₂ als molekulare Einheit fassbar.

Schwingungs-Daten

Als weitere Bindungsparameter des zentralen C_4 Sn₂X₂-Teils der hier diskutierten Verbindungen ist die Sn-Sn-Valenzschwingung ν (Sn-Sn) von Interesse. Sie führt im Raman-Spektrum zu einer starken, scharfen Bande. Entsprechende IR-Absorptionen sind symmetrieverboten (C_i der untersuchten Moleküle) und werden nicht beobachtet, bzw. sind schwach und nicht eindeutig zuzuordnen. Tabelle 9 fasst die drei Bindungsparameter d(Sn-Sn), ${}^{1}J$ (Sn-Sn) und ν (Sn-Sn) zusammen.

Drei der betrachteten Verbindungen (Ph_6Sn_2 triklin, $Ph_4Sn_2(F_3CCO_2)_2$, Ph_4Sn_2 -($H_3CCO_2)_2$) enthalten zwei unabhängige Moleküle in der Kristallstruktur. Nur für $Ph_4Sn_2(F_3CCO_2)_2$ spiegelt sich dies in zwei getrennten $\nu(Sn-Sn)$ -Banden wider.

In allen phenylsubstituierten Distannanen liegt ν (Sn-Sn) um 50-60 cm⁻¹ tiefer als in den Methylanaloga. Übergang von R'₆Sn₂ (d(Sn-Sn) 275-279 pm) zu verbrückten Distannanen (d(Sn-Sn) 269-272 pm) führt zu einer Erhöhung der Schwingungsanregung (10-20 cm⁻¹ bei Phenylsubstitution, 15-25 cm⁻¹ bei Methylsubstitution).

Experimenteller Teil

Ausgangschemikalien und Geräte

 Ph_2SnCl_2 aus Ph_4Sn und $SnCl_4$ [24], Ph_6Sn_2 aus Ph_3SnCl und Li in THF [25], LiAlH₄ (zur Synthese, Merck-Schuchardt), H_3CCOOH (96% reinst, Merck), Cl_3CCOOH (zur Analyse, Merck) und F₃CCOOH (zur Synthese, Merck-Schuchardt).

Die verwendeten Lösungsmittel wurden nach Standardmethoden [26] gereinigt und getrocknet. C/H/Cl-Analyse: mikroanalyt. Labor des Institutes für Organische Chemie der Universität Mainz. Schmelzpunkte: Schmelzpunktmikroskop der Fa. Reichert, Wien. Massenspektren: Spektrometer CH4 der Fa. MAT; Elektronenstossionisierung 70 eV; Simulation der Isotopenmuster mit dem Programm PEEKS [27]. Thermogravimetrie: Thermowaage TG 750 der Fa. Stanton-Redcroft, Proben zwischen 7 und 10 mg, 2 Grad/min, 20 bis 400 °C. Schwingungsspektren: Raman, Gerät SPEX 1403, Anregung Ar-Laser 514 nm, Proben mikrokristallin in Kapillare. Röntgenbeugung: Kappa-Diffraktometer CAD4 der Fa. Enraf–Nonius. Rechnungen im Rechenzentrum der Universität Mainz (HB-DPS-8/70) mit SHELX-76 [28] und lokalen Programmen. Dichtebestimmung: Schwebemethode in Thouletscher Lösung. NMR-Spektren: Spektrometer WP 80 DS der Fa. Bruker, gesättigte Lösungen in CDCl₃(Ph₄Sn₂(H₃CCO₂)₂ ca. 300 mg/2 ml, Ph₄Sn₂(F₃CCO₂)₂ ca. 120 mg/2 ml, Ph₆Sn₂ ca. 500 mg/2 ml).

Darstellung von $Ph_4Sn_2(H_3CCO_2)_2$

Aus Ph_2SnH_2 und H_3CCOOH [6]: 3.44 g Ph_2SnCl_2 (10.0 mmol gelöst in 10 ml Ether) werden bei 0 ° C zu 0.47 g LiAl H_4 (12.4 mmol suspendiert in 10 ml Ether) getropft und 1 h lang gerührt. Nach Hydrolyse mit 20 ml H_2O wird die organische Phase abgetrennt, mit Na₂SO₄ getrocknet und mit 0.5 ml (0.51 g, 8.47 mmol) Essigsäure 96% versetzt. Es tritt schwache Gasentwicklung auf, die schnell abklingt. Beim Einengen der Lösung unter leichtem Erwärmen setzt heftige Gasentwicklung ein, die den vollständigen Umsatz begleitet. Durch Fällung in der Kühltruhe wurden 1.66 g (2.50 mmol, 59% d. Th. bezogen auf H_3CCOOH) $Ph_4Sn_2(H_3CCO_2)_2$ erhalten (Lit.: 75% [6]). Beim Kristallisieren aus CHCl₃ entsteht eine solvenshaltige Phase, deren Zusammensetzung aufgrund der raschen Zersetzung nicht bestimmt werden konnte; Einkristalle wurden durch Eindunsten einer Lösung in CH₂Cl₂ erhalten.

Analyse: Gef.: C, 51.17; H, 4.02. $C_{28}H_{26}Sn_2O_4$ (663.90) bcr.: C, 50.66; H, 3.95%. Die Substanz schmilzt bei 143–148°C (Lit.: 152°C [6]) unter Zersetzung (Gasentwicklung). Im Massenspektrometer tritt erst beim Aufheizen der Ionenquelle auf 140°C ein messbarer Ionenstrom auf, der nur Fragmente mit maximal 1 Zinnatom enthält und aus Produkten der primären thermischen Zersetzung besteht. Auf der Thermowaage wird der Zersetzungspunkt bei 148°C gefunden; langsamer Masseverlust bis 370°C (Gewichtskonstanz, 30% Restgewicht).

Versuch zur Umsetzung von Ph_6Sn_2 mit H_3CCOOH : 3.14 g (4.49 mmol) Ph_6Sn_2 in 25 ml Toluol werden mit 0.55 ml (0.56 g, 9.3 mmol) Eisessig 16 h lang unter Rückfluss gekocht. Beim Aufarbeiten konnte als einziges Produkt 2.85 g (4.1 mmol; 91%) Ph_6Sn_2 zurückgewonnen werden.

Darstellung von $Ph_4Sn_2(F_3CCO_2)_2$

3.53 g (5.0 mmol) Ph₆Sn₂, gelöst in 50 ml CHCl₃, werden bei Raumtemperatur mit 0.77 ml (1.14 g, 10.0 mmol) F₃CCOOH versetzt. Nach 1/2 h wird das Lösungsmittel abgezogen und der Rückstand in 5 ml siedendem Benzol gelöst. Beim Abkühlen fallen 2.20 g (2.85 mmol, 57% d. Th.) Ph₄Sn₂(F₃CCO₂)₂ aus. Zur Röntgenstrukturanalyse wurden Kristalle aus dieser Fällung verwendet. Lösungen der Substanz (z. B. beim Umkristallisieren oder NMR-Messungen) zersetzen sich im Laufe einiger Stunden unter Niederschlagsbildung.

	$Ph_4Sn_2(H_3CCO_2)_2$	$Ph_4 Sn_2(F_5CCO_2)_2$	$Ph_4Sn_2(Cl_3CCO_2)_2$
Knstallhabitus	sechseckige Platte	sechseckige Säule	sechseckige Platte
Kristallform	(010, 001, 011 und 100)	$\{100, 111, 01\}$ und 011	{100, 010, 110 und 001 }
Abmessungen (mm)	$0.84 \times 0.43 \times 0.16$	$0.24 \times 0.38 \times 0.80$	$0.14 \times 0.32 imes 0.43$
Messinstabilität des Diffraktometers	0.04	0.06	0.05
Intensitätsabnahme	Schwankungen $\pm 10^{6}$	lincar 25%	linear 25%
Korrektur	Anpassung an Standardreffexe	linear	linear
unabhängige $ F^2 $. Werte	7793	6736	4571
Reflexe mit $I < 2\sigma(I)^{-\alpha}$	1177	1152	454
Messbereich sin $\vartheta / \lambda ~(pm^{-1})$	$7.035 imes 10^{-3}$	6.497×10^{-3}	7.035×10^{-3}
verfeinerte Parameter	309	347	184
Observable	6616	5584	4117
Berücksichtigung rechnerischer H Lagen	ja ^	nein	ja '
Konvergenz bei R	0.041	0.058	0.030
gewichtetes R ^{-d}	0.065	0.104	0.047
Gewichts-g ^d	0000	0.007	0.002

1

: 1

. . .

1

ÜBERBLICK ZU DEN STRUKTURBESTIMMUNGEN

TABELLE 10

Analyse: Gef.: C, 42.39; H, 2.61. $C_{28}H_{20}F_6O_4Sn_2$ (771.84) ber.: C, 43.57; H, 2.61%. Die farblosen, klaren säulenförmigen Kristalle werden unter dem Schmelzpunktmikroskop ab 140°C opak, zeigen darüber eine kräftige Sublimation und schmelzen bei 148°C unter Gasentwicklung (Lit.: 165°C [6]). Massenspektrum (Probenheizung 85°C): Ionen (*m/e* des intensivsten Peaks im Isotopenmuster; % rel. Intensität) $Ph_4Sn_2(F_3CCO_2)^{+2}$ (*M*⁺⁺ 772; 1), $Ph_3Sn_2(F_3CCO_2)_2^{++}$ (659; 4), $Ph_4Sn_2(F_3CCO_2)^{++}$ (659; 1), Ph_3Sn^+ (351; 100), $PhSn(F_3CCO_2)^{++}$ (309; 65), $PhSn(F_3CCO)^{++}$ (293; 26), Ph_2Sn^{++} (272; 5), $PhSn^+$ (197; 33), $SnOF^+$ (155; 21), Ph_2^{++} (154; 59), SnF^{++} (139; 3), Sn^{++} (120; 24); geringfügiges Überschreiten der Probenheizung von 85°C oder "Tempern" führt zu Spektren, die auf thermische Zersetzung der Probe schliessen lassen. Die thermogravimetrische Untersuchung zeigt schon bei leicht erhöhter Temperatur geringen Substanzverlust, der ab 146°C sprunghaft anwächst und über eine Zwischenstufe (186°C, 63% Restgewicht) Massenkonstanz bei 356°C (36%) erreicht.

Darstellung von $Ph_4Sn_2(Cl_3CCO_2)_2$

Aus Ph_2SnH_2 und Cl_3CCOOH [6]: Zu einer Lösung von ca. 3.46 g (12.6 mmol) Ph_2SnH_2 in 20 ml Ether werden 3.29 g (20.1 mmol) Cl_3CCOOH gegeben. Nach 16 h ist die Gasentwicklung beendet. Aufarbeiten ergibt 1.65 g (1.9 mmol, 19% d. Th. bezogen auf Cl_3CCOOH) $Ph_4Sn_2(Cl_3CCO_2)_2$ (Lit.: 35% [6]).

Aus Ph_6Sn_2 und Cl_3CCOOH : 3.52 g (5.0 mmol) Ph_6Sn_2 werden in 15 ml CHCl_3 gelöst und dazu 1.64 g (10.1 mmol) Cl_3CCOOH , in 3 ml CHCl_3 gelöst, bei Raumtemperatur unter Rühren zugefügt. Nach einigen Minuten fällt ein farbloser Niederschlag aus. Zur Vervollständigung der Reaktion wird noch 2 h bei Raumtemperatur weitergerührt, dann das Rohprodukt in der Kühltruhe ausgefällt. Fraktionierte Kristallisation aus CH_2Cl_2 ergibt 2.90 g (3.3 mmol, 67% d. Th.) reines $Ph_4Sn_2(Cl_3CCO_2)_2$. Einkristalle wurden durch Umkristallisieren aus $CHCl_3/PE50-70$ erhalten.

Analyse: Gef.: C, 38.51; H, 2.40; Cl, 23.92. $C_{28}H_{20}Cl_6O_4Sn_2$ (870.57) ber.: C, 38.63; H, 2.32; Cl, 24.43%. Die farblosen, klaren Kristalle (sechseckige, längliche Plättchen) zerspringen auf dem Schmelzpunktmikroskop ab 150 °C und schmelzen zwischen 164 und 170 °C unter kräftiger Gasentwicklung (Lit.: 170 °C [6]). Im Massenspektrometer setzt ab 120 °C in der Ionenquelle ein instabiler, unkontrolliert rasch ansteigender Ionenstrom ein, der kein Fragment mit m/e grösser 400 oder mit mehr als einem Zinnatom enthält. Thermogravimetrisch wird der Zersetzungspunkt bei 169 °C gefunden mit Massenverlust ab 151 °C. Gewichtskonstanz wird bei 350 °C und 13% verbleibendem Probengewicht erreicht.

Bestimmung der Kristallstrukturen

Reflexintensitäten wurden an in Glaskapillaren eingeschmolzenen Kristallen im $\omega/2\vartheta$ -Modus mit monochromatisierter Mo- K_{α} -Strahlung gewonnen. Die wichtigsten, Kristallvermessung und Strukturlösung betreffenden Daten können Tabelle 10 entnommen werden.

Die Lagen der Zinnatome wurden durch Lösen der Patterson-Synthese gefunden, nachfolgende Fourier-Synthesen ergaben alle weiteren Nicht-H-Atome. Die F_3C -Gruppen in $Ph_4Sn_2(F_3CCO_2)_2$ zeigten dabei mehr als drei mögliche F-Positionen, so dass den sechs stärksten Fourier-Maxima je eine halb besetzte F-Lage zugeordnet wurde. Die Verfeinerung dieser F_3C -Gruppen erfolgte mit gemeinsamem, isotropen Temperaturfaktor der F-Atome und fest vorgegebener C-F-Bindungslänge. Die Sn., Cl-, O- und C-Atome aller Strukturen wurden mit anisotropen Temperaturfaktoren (Vollmatrix) ausverfeinert, bei $Ph_4Sn_2(F_3CCO_2)_2$ ergab die Berücksichtigung geometrisch berechneter H-Atome keine Verbesserung der Strukturdaten. Tabellen der gemessenen und berechneten Strukturamplituden können angefordert werden.

Dank

Wir danken der Deutschen Forschungsgemeinschaft (Projekt Dr 109/6-3) und dem Fonds der Chemischen Industrie für die Unterstützung dieser Untersuchungen. Der Firma Hoechst AG (Werk Gendorf) gilt unser Dank für Spenden an Ph_3SnCl und Ph_4Sn .

Literatur

- 1 S. Adams und M. Dräger, 5th Int. Conf. Organomet. and Coord. Chem. Ge, Sn, Pb, Padua, Abstr., (1986) 46.
- 2 S. Adams, M. Dräger und B. Mathiasch, Z. Anorg. Allg. Chem., 532 (1986) 81.
- 3 B. Wrackmeyer, Annu. Rep. NMR Spectrosc., 16 (1985) 73.
- 4 B. Mathiasch und T.N. Mitchell, J. Organomet. Chem., 185 (1980) 351.
- 5 R. Faggiani, J.P. Johnson, I.D. Brown und T. Birchall. Acta Crystallogr. Sect. B, 34 (1978) 3742 und 35 (1979) 1227; T. Birchall und J.P. Johnson, Canad. J. Chem., 57 (1979) 160 und 60 (1982) 934.
- 6 A.K. Sawyer und H.G. Kuivila, J. Amer. Chem. Soc., 82 (1960) 5958; U.S.-Pat 3.083,217 (4.10.1960), ref. in C. A., 59 (1963) P7559c; J. Org. Chem., 27 (1962) 610.
- 7 G. Plazzogna, V. Peruzzo und G. Tagliavini, J. Organomet. Chem., 24 (1970) 667 und 66 (1974) 57.
- 8 D. Simon, K. Häberle und M. Dräger, J. Organomet, Chem., 267 (1984) 133.
- 9 H. Gilman und J. Eisch, J. Org. Chem., 20 (1955) 763; S. Weber und E.J. Becker, J. Org. Chem., 27 (1962) 1258; E.J. Kupchik und R.J. Kiesel, J. Org. Chem., 31 (1966) 456.
- 10 E. Wiberg und H. Behringer, Z. Anorg, Allg. Chem., 329 (1964) 290; T. Birchall und J.P. Johnson, Inorg, Chem., 21 (1982) 3724.
- 11 G. Bandoli, D.A. Clemente und C. Panattoni, J. Chem. Soc., Chem. Commun., (1971) 311
- 12 W.C. Hamilton, Acta Crystallogr., 12 (1959) 609.
- 13 M. Delmas, J.C. Maire, Y. Richard, G. Plazzogna, V. Peruzzo und G. Tagliavini, J. Organomet, Chem., 30 (1971) C101; G.M. Bancroft, V.G.K. Das, T.K. Sham und M.G. Clark, J. Chem. Soc., Dalton Trans., (1976) 643.
- 14 T.N. Mitchell und G. Walter, J. Chem. Soc., Perkin Trans. H. (1977) 1842.
- 15 J. Holeček, K. Handliř, M. Nádvorník und A. Lyčka, J. Organomet. Chem., 258 (1983) 147.
- 16 G.A. Mazzochin, G. Plazzogna und P. Furlan, Inorg. Chim. Acta, 22 (1977) 29.
- 17 R. Willem, K. Jurkschat, A. Tzschach, J. Piret-Meunier, M. van Meerssche, G. van Binst, C. Wynants und M. Gielen, XIIth Int. Conf. Organomet. Chem., Wien, Abstr., (1985) P279.
- 18 H. Preut, H.-J. Haupt und F. Huber, Z. Anorg, Allg. Chem., 396 (1973) 81.
- 19 P.A. Bulliner, C.O. Quicksall und T.G. Spiro, Inorg. Chem., 10 (1971) 13.
- 20 H.U. Buschhaus, W.P. Neumann und T. Apoussidis. Liebigs Ann. Chem., (1981) 1190.
- 21 M.P. Brown, E. Cartmell und G.W.A. Fowles, J. Chem. Soc., (1960) 506.
- 22 B. Fontal and T.G. Spiro, Inorg. Chem., 10 (1971) 9.
- 23 B. Mathiasch, Syn. React. Inorg. Metal.-Org. Chem., 8 (1978) 103.
- 24 H. Gilman und L.A. Gist, J. Org. Chem., 22 (1957) 368.
- 25 H. Gilman und S.D. Rosenberg, J. Amer. Chem. Soc., 74 (1952) 531.
- 26 Organikum, 15. Aufl. VEB Deutscher Verlag der Wissenschaften, Berlin 1977.
- 27 B. Mattson und E. Carberry, J. Chem. Educ., 50 (1973) 511
- 28 G. Sheldrick, Cambridge, 1976.